Tuesday, March 12, 2019

Single Variable Calculus, Chapter 4, 4.8, Section 4.8, Problem 8

Find $x_3$, the 3rd approximation to the root of $\displaystyle x^5 + 2 = 0$ using Newton's Method with the specified initial approximation $x_1 = -1$. (Give your answer to four decimal places.)

Using Approximation Formula

$\displaystyle x_{n + 1} = x_n - \frac{f(x_n)}{f'(x_n)}$


$
\begin{equation}
\begin{aligned}

f'(x) =& \frac{d}{dx} (x^5) + \frac{d}{dx} (2)
\\
\\
f'(x) =& 5x^4
\\
\\
x_2 =& x_1 - \frac{x_1^5 + 2}{5x_1^4}
\\
\\
x_2 =& -1 - \frac{(-1)^5 + 2}{5(-1)^4}
\\
\\
x_2 =& -1 - \frac{-1 + 2}{5 (-1)^4}
\\
\\
x_2 =& - 1 - \frac{-1 + 2}{5}
\\
\\
x_2 =& -1 - \frac{1}{5}
\\
\\
x_2 =& \frac{-5 - 1}{5}
\\
\\
x_2 =& \frac{-6}{5}
\\
\\
\\
\\
x_3 =& x_2 - \frac{x^5_2 + 2}{5x^4_2}
\\
\\
x_3 =& \frac{-6}{5} - \frac{\displaystyle \left( \frac{-6}{5} \right)^5 + 2 }{ \displaystyle 5 \left( \frac{-6}{5} \right)^4 }
\\
\\
x_3 =& \frac{-6}{5} - \frac{\displaystyle \frac{-7776}{3125} + 2 }{\displaystyle 5 \left( \frac{1296}{625} \right)}
\\
\\
x_3 =& \frac{-6}{5} - \frac{\displaystyle \frac{-7776 + 6250}{3125}}{\displaystyle \frac{1296}{125}}
\\
\\
x_3 =& \frac{-6}{5} - \frac{(-1526)(125)}{(3125)(1296)}
\\
\\
x_3 =& \frac{-6}{5} + \frac{190750}{4050000}
\\
\\
x_3 =& \frac{-6}{5} + \frac{763}{16200}


\end{aligned}
\end{equation}
$


$\quad \boxed{x_3 \approx -1.1529}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...