Tuesday, January 1, 2019

y = x^4/8 + 1/(4x^2) , [1, 3] Find the arc length of the graph of the function over the indicated interval.

Arc length (L) of the function y=f(x) on the interval [a,b] is given by the formula,
L=int_a^b sqrt(1+(dy/dx)^2)dx , if y=f(x) a <=  x <=  b,
Now y=x^4/8+1/(4x^2)
Now we need to differentiate the above function with respect to x,
dy/dx=1/8(4)x^(4-1)+1/4(-2)x^(-2-1)
dy/dx=1/2x^3-1/2x^(-3)
dy/dx=x^3/2-1/(2x^3)
dy/dx=(x^6-1)/(2x^3)  
Now arc length L=int_1^3 sqrt(1+((x^6-1)/(2x^3))^2)dx
=int_1^3sqrt(1+(x^12-2x^6+1)/(4x^6))dx
=int_1^3sqrt((4x^6+x^12-2x^6+1)/(4x^6))dx
=int_1^3sqrt((x^12+2x^6+1)/(4x^6))dx
=int_1^3sqrt(((x^6+1)/(2x^3))^2)dx
=int_1^3(x^6+1)/(2x^3)dx
=int_1^3(x^6/(2x^3)+1/(2x^3))dx
=int_1^3(x^3/2+1/2x^(-3))dx
=[1/2x^4/4+1/2(x^(-3+1)/(-3+1))]_1^3
=[x^4/8-1/(4x^2)]_1^3
=[3^4/8-1/(4(3)^2)]-[1^4/8-1/(4(1)^2)]
=[81/8-1/36]-[1/8-1/4]
=[(729-2)/72]-[(1-2)/8]
=[727/72]-[-1/8]
=727/72+1/8
=(727+9)/72
=736/72
=92/9
So, the Arc length=92/9
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...