Monday, January 21, 2019

Calculus: Early Transcendentals, Chapter 7, 7.4, Section 7.4, Problem 21

Integrate int(x^3+4)/(x^2+4)dx
Rewrite the given function using long division.
int[x+(-4x+4)/(x^2+4)]dx
=intxdx-int(4x)/(x^2+4)dx+int4/(x^2+4)dx

Integrate the first integral using the pattern intx^n=x^(n+1)/n+C
intx=x^2/2+C

Integrate the second integral using u-substitution.
let u=x^2+4
(du)/dx=2x
dx=(du)/(2x)
-int(4x)/(x^2+4)dx
=-4intx/u*(du)/(2x)

=-2ln|x^2+4|+C
=-2ln(x^2+4)+C

Integrate the third integral using the pattern
int(dx)/(x^2+a^2)=(1/a)tan^-1(x/a)+C
int4/(x^2+4)dx=(4)(1/2)tan^-1(x/2)+C=2tan^-1(x/2)+C

The final answer is:
1/2x^2-2ln(x^2+4)+2tan^-1(x/2)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...