Sunday, January 27, 2019

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 50

Determine the equation of the line through the point $(3,5)$ that cuts off the least area of the first quadrant.



By using Point Slope Form, we can determine the equation of the line that pass through the point $(3,5)$.

$
\begin{equation}
\begin{aligned}
y - 5 &= m(x-3)\\
\\
y &= mx - 3m + 5
\end{aligned}
\end{equation}
$


So the $y$-intercept when $x=$ will be,
$ y = m(0) - 3m + 5$

And the $x$-intercept when $y = 0$ will be,

$
\begin{equation}
\begin{aligned}
0 &= mx - 3m + 5\\
\\
x &= 3 - \frac{5}{m}
\end{aligned}
\end{equation}
$







$
\begin{equation}
\begin{aligned}
\text{So, the area of the triangle will be }A &= \frac{1}{2} \left( 3-\frac{5}{m}\right) \left( 5-3m\right)\\
\\
A &= 15 - \frac{25}{2m} - \frac{9m}{2}
\end{aligned}
\end{equation}
$


If we take the derivative of $A$, we get...
$\displaystyle A' = \frac{25}{2m^2} - \frac{9}{2}$

when $A'=0$,

$
\begin{equation}
\begin{aligned}
\frac{25}{2m^2} &= \frac{9}{2}\\
\\
m^2 &= \frac{25}{9}\\
\\
m &= -\frac{5}{3} \text{ and } m = \frac{5}{3}
\end{aligned}
\end{equation}
$


$\displaystyle m = \frac{-5}{3}$ respects a minimum since $\displaystyle A''\left( \frac{-5}{3} \right) > 0$

$
\begin{equation}
\begin{aligned}
\text{Therefore, the equation of the line is } y &= mx - 3m + 5 = - \frac{5}{3} x - 3 \left( \frac{-5}{3}\right)+5\\
\\
y &= \frac{-5}{3}x + 10
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...