Thursday, January 10, 2019

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 38

Determine the integral π2π4cot3xdx


π2π4cot3xdx=π2π4cotxcot2xdxApply Trigonometric Identities csc2x=1+cot2xπ2π4cot3xdx=π2π4cotx(csc2x1)dxπ2π4cot3xdx=π2π4(cotxcsc2xcotx)dxπ2π4cot3xdx=π2π4cotxcsc2xdxπ2π4cotxdx


We integrate the equation term by term

@ 1st term

π2π4cotxcsc2xdx

Let u=cotx, then du=csc2xdx, so csc2xdx=du. When x=π4,u=1 and when x=π2,u=0. Therefore,


π2π4cotxcsc2xdx=01uduπ2π4cotxcsc2xdx=01uduπ2π4cotxcsc2xdx=[u1+11+1]01π2π4cotxcsc2xdx=[u22]01π2π4cotxcsc2xdx=(0)22+(1)22π2π4cotxcsc2xdx=12


@ 2nd term


π2π4cotxdx=[ln(sinx)]π2π4π2π4cotxdx=ln(sinπ2)ln(sinπ4)π2π4cotxdx=ln(1)=ln(22)π2π4cotxdx=ln(22)


Combine the results of the integration term by term


π2π4cotx3dx=12(ln(22))π2π4cotx3dx=12+ln(22)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...