Thursday, January 10, 2019

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 38

Determine the integral $\displaystyle \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx$


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx =& \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \cot^2 x dx
\qquad \text{Apply Trigonometric Identities } \csc^2 x = 1 + \cot^2 x
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx =& \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x (\csc^2 x - 1) dx
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx =& \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} (\cot x \csc^2 x - \cot x) dx
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx =& \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx - \int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\cot x dx

\end{aligned}
\end{equation}
$


We integrate the equation term by term

@ 1st term

$\displaystyle \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx$

Let $u = \cot x$, then $du = - \csc^2 x dx$, so $\csc^2 x dx = -du$. When $\displaystyle x = \frac{\pi}{4}, u = 1$ and when $\displaystyle x = \frac{\pi}{2}, u = 0$. Therefore,


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& \int^0_1 u \cdot -du
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& - \int^0_1 u du
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& - \left[ \frac{u^{1 + 1}}{1 + 1} \right]^0_1
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& - \left[ \frac{u^2}{2} \right]^0_1
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& \frac{-(0)^2}{2} + \frac{(1)^2}{2}
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& \frac{1}{2}


\end{aligned}
\end{equation}
$


@ 2nd term


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x dx =& \left[ \ln (\sin x) \right]^{\frac{\pi}{2}}_{\frac{\pi}{4}}
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x dx =& \ln \left( \sin \frac{\pi}{2} \right) - \ln \left( \sin \frac{\pi}{4} \right)
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x dx =& \ln (1) = \ln \left( \frac{\sqrt{2}}{2} \right)
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x dx =& - \ln \left( \frac{\sqrt{2}}{2} \right)

\end{aligned}
\end{equation}
$


Combine the results of the integration term by term


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x^3 dx =& \frac{1}{2} - \left( - \ln \left( \frac{\sqrt{2}}{2} \right) \right)
\\\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x^3 dx =& \frac{1}{2} + \ln \left( \frac{\sqrt{2}}{2} \right)

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...