Saturday, January 26, 2019

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 32

Solve the equation $e^x - 12e^{-x} - 1 = 0$

$
\begin{equation}
\begin{aligned}
e^x - 12e^{-x} - 1 &= 0\\
\\
e^x - \frac{12}{e^x} - 1 &= 0 && \text{Law of exponent } a^{-n} = \frac{1}{a^n}\\
\\
\frac{e^{2x}-12-e^x}{e^x} &= 0 && \text{Get the LCD}\\
\\
e^{2x}-e^x-12 &= 0 && \text{Multiply both sides by } e^x\\
\\
(e^x - 4)(e^x + 3) &= 0 && \text{Factor using trial and error}
\end{aligned}
\end{equation}
$

Solve for $x$

$
\begin{equation}
\begin{aligned}
e^x - 4 &= 0
&&&
e^x + 3 &= 0\\
\\
e^x &= 4
&&\text{Add 4}&
e^x &= -3 && \text{Subtract 3}\\
\\
\ln e^x &= \ln 4
&&\text{Take $\ln$ of each side}&
\ln e^x &= \ln(-3) && \text{Take $\ln$ of each side}\\
\\
x &= \ln4
&&\text{Property of $\ln$}&
x &= \ln(-3) && \text{Property of $\ln$}
\end{aligned}
\end{equation}
$

The only solution to the given equation is only $x = \ln 4$, since $\ln (-3)$ is undefined.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...