Friday, January 25, 2019

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 82

Determine the solution of the equation $\displaystyle \frac{1.73 x}{2.12+x} = 1.51$ correct to two decimals

$
\begin{equation}
\begin{aligned}
\frac{1.73 x}{2.12+x} &= 1.51 && \text{Multiply both sides by } (2.12 +x)\\
\\
\cancel{(2.12+x)} & \left[ \frac{1.73x}{\cancel{2.12+x}} = 1.51 \right] (2.12+x) && \text{Cancel out like terms}\\
\\
1.73 x &= 1.51(2.12+x) && \text{Apply Distributive Property}\\
\\
1.73 x &= 3.2012 + 1.51 x && \text{Combine like terms}\\
\\
1.73x - 1.51x &= 3.2012 + 1.51 x - 1.51 x && \text{Simplify}\\
\\
0.22x &= 3.2012 && \text{Divide both sides by 0.22}\\
\\
\frac{\cancel{0.22}x}{\cancel{0.22}} &= \frac{3.2012}{0.22} && \text{Simplify}\\
\\
x &= 14.55
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...