Monday, January 7, 2019

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 28

Determine the $\displaystyle\lim \limits_{h \to 0} \frac{(3 + h)^{-1} - 3^{-1}}{h}$, if it exists.


$
\begin{equation}
\begin{aligned}
& \lim \limits_{h \to 0} \frac{(3 + h)^{-1} - 3^{-1}}{h}
= \lim \limits_{h \to 0} \frac{\frac{1}{3 + h} - \frac{1}{3}}{h}
&& \text{ Get the reciprocal of the numerator to eliminate negative exponents.}\\
\\
& \lim \limits_{h \to 0} \frac{\frac{1}{3 + h} - \frac{1}{3}}{h}
= \lim \limits_{h \to 0} \frac{\frac{3-(3+h)}{3(3+h)}}{h} = \lim \limits_{h \to 0} \frac{3-(3+h)}{3h(3+h)}
&& \text{ Get the LCD and simplify}\\
\\
& \lim \limits_{h \to 0} \frac{-1}{9 + 3h}
= \frac{-1}{9 + 3(0)}
= \frac{-1}{9}
&& \text{ Substitute value of $x$ then simplify}\\
\\
& \fbox{$ \lim \limits_{h \to 0} \displaystyle \frac{( 3 + h)^{-1} - 3^{-1}}{h} = \frac{-1}{9} $}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...