Sunday, December 9, 2018

Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 20

Determine $\displaystyle \lim_{x \to -\infty} (x + \sqrt{x^2 + 2x})$

We apply completing the square in the equation under the square root.


$
\begin{equation}
\begin{aligned}

x^2 + 2x =& 0
\\
\\
x^2 + 2x + 1 =& 1
\\
\\
(x + 1)^2 =& 1
\\
\\
(x + 1)^2 - 1 =& 0
\\
\\
\lim_{x \to - \infty} x^2 + 2x =& \lim_{x \to - \infty} (x + 1)^2 - 1 = \lim_{x \to - \infty} (x + 1)^2
\qquad \text{We can ignore -1 because its too small compared to $(x + 1)^2$ as $x$ approaches infinity.}

\end{aligned}
\end{equation}
$


So, we can rewrite the limit


$
\begin{equation}
\begin{aligned}

\lim_{x \to - \infty} x + \sqrt{x^2 + 2x} =& \lim_{x \to - \infty} x + \sqrt{(x + 1)^2}
\\
\\
=& \lim_{x \to - \infty} x + | x + 1 |
\qquad \text{when $x$ approaches $- \infty$, it makes $(x + 1)$ negative, so $| x + 1 | = - (x + 1)$}
\\
\\
=& \lim_{x \to - \infty} x - (x + 1)
\\
\\
=& \lim_{x \to - \infty} x - x - 1
\\
\\
=& \lim_{x \to - \infty} -1
\\
\\
=& - 1

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...