Monday, December 24, 2018

Calculus of a Single Variable, Chapter 8, 8.2, Section 8.2, Problem 33

dy/dt=t^2/sqrt(3+5t)
y=intt^2/sqrt(3+5t)dt
Apply integral substitution :u=sqrt(3+5t)
du=1/2(3+5t)^(1/2-1)(5)dt
du=5/(2sqrt(3+5t))dt
=>dt/sqrt(3+5t)=2/5du
u=sqrt(3+5t)
squaring above,
u^2=3+5t
=>5t=u^2-3
t=(u^2-3)/5
t^2=1/25(u^2-3)^2
t^2=1/25(u^4-6u^2+9)
y=intt^2/(sqrt(3+5t))dt
=int1/25(u^4-6u^2+9)(2/5)du
=int2/125(u^4-6u^2+9)du
Take the constant out,
=2/125int(u^4-6u^2+9)du
Apply the sum and power rule,
=2/125(intu^4du-int6u^2du+int9du)
=2/125(u^5/5-6u^3/3+9u)
=2/125(u^5/5-2u^3+9u)
Substitute back u=sqrt(3+5t)
=2/125(1/5(3+5t)^(5/2)-2(3+5t)^(3/2)+9(3+5t)^(1/2))
simplify the above and add a constant C to the solution,
=2/125(3+5t)^(1/2)(1/5(3+5t)^2-2(3+5t)+9)+C
=2/125sqrt(3+5t)(1/5(9+25t^2+30t)-2(3+5t)+9)+C
=2/125sqrt(3+5t)((9+25t^2+30t-10(3+5t)+45)/5)+C
=2/125sqrt(3+5t)((9+25t^2+30t-30-50t+45)/5)+C
=2/125sqrt(3+5t)((25t^2-20t+24)/5)+C
y=2/625(25t^2-20t+24)sqrt(3+5t)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...