Sunday, December 30, 2018

College Algebra, Chapter 4, 4.5, Section 4.5, Problem 44

Find a polynomial $P(x)$ that has degree 5 with integer coefficient and zeros $\displaystyle \frac{1}{2}, -1$ and $-i$, and leading coefficient 4; the zero $-1$ has multiplicity 2.
Recall that if the polynomial function $P$ has real coefficient and if a $a + bi$ is a zero of $P$, then $a-bi$ is also a zero of $P$. In our case, we have $\displaystyle \frac{1}{2}, -1, -i$ and $i$. Thus the required polynomial has the form.

$
\begin{equation}
\begin{aligned}
P(x) &= a\left( x - \frac{1}{2} \right)[x - (-1)]^2 (x -i) [x - (-i)] && \text{Model}\\
\\
P(x) &= a\left( x - \frac{1}{2} \right) (x + 1)^2 (x-i)(x+i) && \text{Simplify}\\
\\
P(x) &= a\left( x - \frac{1}{2} \right) (x+1)^2 (x^2 -i^2) && \text{Difference of squares}\\
\\
P(x) &= a\left( x - \frac{1}{2} \right) (x+1)^2 (x^2 + 1) && \text{Recall that } i^2 = -1\\
\\\
P(x) &= a(x+1)^2 \left[ x^3 + x - \frac{1}{2}x^2 - \frac{1}{2} \right] && \text{Apply FOIL method}\\
\\
P(x) &= a \left[ x^2 + 2x + 1 \right] \left[ x^3 + x - \frac{1}{2}x^2 - \frac{1}{2} \right] && \text{Expand}\\
\\
P(x) &= a \left[ x^5 + x^3 - \frac{1}{2}x^4 - \frac{1}{2}x^2 + 2x^4 + 2x^2 - x^3 - x + x^3 + x - \frac{1}{2}x^2 - \frac{1}{2} \right] && \text{Expand}\\
\\
P(x) &= a \left[ x^5 + \frac{3}{2}x^4 + x^3 + x^2 - \frac{1}{2} \right] && \text{Simplify and combine like terms}\\
\\
P(x) &= 4 \left[ x^5 + \frac{3}{2}x^4 + x^3 + x^2 - \frac{1}{2} \right] && \text{Substitute } a = 4 \text{ to be the leading coefficient}\\
\\
P(x) &= 4x^5 + 6x^4 + 4x^3 + 4x^2 - 2
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...