Tuesday, December 11, 2018

Single Variable Calculus, Chapter 2, Review Exercises, Section Review Exercises, Problem 23

Suppose that

$ \qquad f(x) = \left\{
\begin{array}{ccc}
\sqrt{-x} & \text{ if } & x < 0 \\
3 - x & \text{ if } & 0 \leq x < 3 \\
(x - 3)^2 & \text{ if } & x > 3
\end{array}
\right.
$

a.) Find each limit. if it exists

$\qquad$ i.)$\lim \limits_{x \to 0^+} f(x)$

$\qquad \qquad$ Using Equation 2, $\lim \limits_{x \to 0^+} f(x) = \lim \limits_{x \to 0^+} (3 - x) = 3-0 = 3$

$\qquad$ ii.) $\lim \limits_{x \to 0^-} f(x)$

$\qquad \qquad$ Using Equation 1, $\lim \limits_{x \to 0^-} f(x) = \lim \limits_{x \to 0^-} \sqrt{-x} = \sqrt{0} = 0$

$\qquad$ iii.) $\lim \limits_{x \to 0} f(x)$

$\qquad \qquad$ Referring to the given conditions, $\lim \limits_{x \to 0} f(x)$ does not exist

$\qquad$ iv.) $\lim \limits_{x \to 3^-} f(x)$

$\qquad \qquad$ Using Equation 2, $\lim \limits_{x \to 3^-} f(x) = \lim \limits_{x \to 3^-} (3 -x) = 3 - 3 = 0$

$\qquad$ v.) $\lim \limits_{x \to 3^+} f(x)$

$\qquad \qquad$ Using Equation 3, $\lim \limits_{x \to 3^+} f(x) = \lim \limits_{x \to 3^+} (x - 3)^2 = (3 - 3)^2 = 0$

$\qquad$ vi.) $\lim \limits_{x \to 3} f(x)$

$\qquad \qquad$ Referring to the given conditions, $\lim \limits_{x \to 3} f(x) = 0$

b.) Find where $f$ is discontinuous.

$\qquad$ Referring to the given conditions $f$ is discontinuous at $x = 0$ because $\lim \limits_{x \to 0} f(x)$ does not exist and also $f$ is discontinuous at $x = 3$ because $f(3)$ is undefined.

$\qquad$ Therefore $f$ is discontinuous at 0 and 3.

c.) Graph the function $f$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...