Thursday, December 13, 2018

Calculus of a Single Variable, Chapter 7, 7.4, Section 7.4, Problem 46

To find the area of this surface, we rotate the function y = x/2 + 3 about the y-axis (not the x-axis) in the range 1<=x<=5 and this way create a finite surface of revolution.

A way to approach this problem is to swap the roles of x and y , essentially looking at the page side-on, so that we can use the standard formulae that are usually written in terms of x (ie, that usually refer to the x-axis).
The formula for a surface of revolution A is given by (interchanging the roles of x and y )
A = int_a^b (2pi x) sqrt(1+(frac(dx)(dy))^2)dy
Since we are swapping the roles of x and y , we need the function y = x/2 + 3 written as x in terms of y as opposed to y in terms of x . So we have
x = 2y - 6
To obtain the area required by integration, we are effectively adding together tiny rings (of circumference 2pi x at a point y on the y-axis) where each ring takes up length dy on the y-axis. The distance from the circular edge to circular edge of each ring is sqrt(1+(frac(dx)(dy))^2) dy
This is the arc length of the function x = f(y) in a segment of length dy of the y-axis, which can be thought of as the hypotenuse of a tiny triangle with width dy and height dx .
These distances from edge to edge of the tiny rings are then multiplied by the circumference of the surface at that point, 2pi x , to give the surface area of each ring. The tiny sloped rings are added up to give the full sloped surface area of revolution.
We have for this function, x = 2y -6 , that (dx)/(dy) = 2
and since the range (in y ) over which to take the integral is 1 <=x <=5 , or equivalently 7/2 <= y <= 11/2 we have a = 7/2 and b = 11/2 .
Therefore, the area required, A, is given by
A = int_((7)/(2))^((11)/(2)) 2pi (2y -6) sqrt(5) dy = 2sqrt(5)pi int_((7)/(2))^((11)/(2)) 2y - 6 \quad dy

= 2sqrt(5)pi y(y - 6)|_((7)/(2))^((11)/(2)) = (sqrt(5))/(2)pi [11(11-6) - 7(7-6)]
So that the surface area of rotation A is given by
A = 24(sqrt(5)) pi

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...