Thursday, December 27, 2018

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 50

Suppose that a lighthouse is located on a small island, 3 km away from the nearest point $P$ on a straight shore line, and its light makes four revolutions per minute. How fast is the beam of light moving along the shore line when it is 1km from $P$





$
\begin{equation}
\begin{aligned}
\tan \theta &= \frac{y}{3}\\
\\
\theta &= \tan^{-1} \left( \frac{y}{3} \right)
\end{aligned}
\end{equation}
$


By taking the derivative with respect to time,

$
\begin{equation}
\begin{aligned}
\frac{d \theta}{dt} &= \frac{\frac{d}{dy}\left( \frac{y}{3} \right) \frac{dy}{dt}}{1 + \left( \frac{y}{3} \right)^2}\\
\\
\frac{d \theta}{dt} &= \frac{\left( \frac{1}{3} \right) \frac{dy}{dt}}{1 + \frac{y^2}{9}}\\
\\
\frac{d \theta}{dt} &= \frac{\left( \frac{1}{3} \right) \frac{dy}{dt} }{\frac{9+y^2}{9}}\\
\\
\frac{d \theta}{dt} &= \frac{3\frac{dy}{dt}}{9 + y^2}\\
\\
\frac{d \theta}{dt} &= \frac{9+y^2}{3} \frac{d \theta}{dt}
\end{aligned}
\end{equation}
$

Since, $\displaystyle 1 \text{km } \text{ and } \frac{d \theta}{dt} = 4 \frac{\cancel{\text{rev}}}{\text{min}} \left( \frac{2\pi\text{rad}}{1\cancel{\text{rev}}} \right) = 8 \pi \frac{\text{rad}}{\text{min}}$

So,

$
\begin{equation}
\begin{aligned}
\frac{dy}{dt} &= \frac{9+ (1)^2}{3} \left( 8 \pi \frac{\text{rad}}{\text{min}} \right)\\
\\
\frac{dy}{dt} &= \frac{80 \pi}{3} \frac{\text{km}}{\text{min}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...