Saturday, December 8, 2018

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 77

A star whose brightness alternatively increases and decreases has a function of $B(t) = 4.0 + 0.35 \sin \displaystyle \left( \frac{2 \pi t}{5.4} \right)$ where $t$ is measured in days.

a.) Find the rate of charge of the brightness after $t$ days.


$
\begin{equation}
\begin{aligned}

\frac{dB}{dt} =& \frac{d}{dt} (4) + 0.35 \frac{d}{dt} \left[ \sin \left( \frac{2 \pi t}{5.4} \right) \right] \cdot \frac{d}{dt} \left( \frac{2 \pi t}{5.4} \right)
\\
\\
\frac{dB}{dt} =& 0.35 \cos \left( \frac{2 \pi t}{5.4} \right) \left( \frac{2 \pi}{5.4} \right)
\\
\\
\frac{dB}{dt} =& \frac{7 \pi}{54} \cos \left( \frac{2 \pi t}{5.4} \right)

\end{aligned}
\end{equation}
$




b.) Evaluate the rate of increase after one day.



$
\begin{equation}
\begin{aligned}

@ t =& 1
\\
\\
\frac{dB}{dt} =& \frac{7 \pi}{54} \cos \left( \frac{2 \pi (1)}{5.4} \right)
\\
\\
\frac{dB}{dt} =& 0.1613 \text{ brightness/day}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...