Saturday, December 8, 2018

College Algebra, Chapter 9, 9.6, Section 9.6, Problem 42

Determine the term that does not contain $x$ in the expansion of $\displaystyle \left( 8x + \frac{1}{2x} \right)^8$

The term that contains $a^r$ in the expansion of $(a + b)^n$ is

$\displaystyle \left( \begin{array}{c}
n \\
n - r
\end{array} \right) a^r b^{n - r}$

In our case, we have $\displaystyle a = 8x, b = \frac{1}{2x}$ and $n = 8$, so


$
\begin{equation}
\begin{aligned}

=& \left( \begin{array}{c}
8 \\
8 - r
\end{array} \right) (8x)^r \left( \frac{1}{2x} \right)^{8 - r}
\\
\\
=& \left( \begin{array}{c}
8 \\
8 - r
\end{array} \right) (8x)^r \left( \frac{1}{2} x^{-1} \right)^{8 - r}
\\
\\
=& \left( \begin{array}{c}
8 \\
8 - r
\end{array} \right) (8x)^r \left( \frac{1}{2} \right)^{8 - r} (x ^{-1})^{8 - r}
\\
\\
=& \left( \begin{array}{c}
8 \\
8 - r
\end{array} \right) (8x)^r \left( \frac{1}{2} \right)^{8 - r} (x)^{r - 8}
\\
\\
=& \left( \begin{array}{c}
8 \\
8 - r
\end{array} \right) \left( \frac{8^r}{2^{8 - r}} \right) (x)^{2r - 8}

\end{aligned}
\end{equation}
$


Thus, the term that do not contain $x$ is the term in which


$
\begin{equation}
\begin{aligned}

2r - 8 =& 0
\\
r =& 4

\end{aligned}
\end{equation}
$


So, the required term is


$
\begin{equation}
\begin{aligned}

=& \left( \begin{array}{c}
8 \\
8 - 4
\end{array} \right) \left( \frac{8^4}{2^{8 - 4}} \right) (x)^{2 (4) - 4}
\\
\\
=& 17920

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...