Tuesday, April 10, 2018

Precalculus, Chapter 6, 6.2, Section 6.2, Problem 17

The given in the triangle are A=120^o , b=6 and c=7 . To solve for the values of a, B and C, let's apply Cosine Law.
For side a:
a^2=b^2+c^2-2*b*c*cosA
a^2=6^2+7^2-2*6*7cos(120^o)
a^2=36+49-84cos(120^o)
a^2=127
a=sqrt127
a=11.27
For angle B:
b^2=a^2+c^2-2*a*c*cosB
6^2=(sqrt127)^2+7^2-2*sqrt127*7*cosB
36=176-14sqrt127cosB
(36-176)/(-14sqrt127)=cosB
cos^(-1)((36-176)/(-14sqrt127))=B
27.46^o=B
For angle C:
c^2=a^2+b^2-2*a*b*cosC
7^2=(sqrt127)^2+6^2-2*sqrt127*6*cosC
49=127+36-12sqrt127cosC
49=163-12sqrt127cosC
(49-163)/(-12sqrt127)=cosC
cos^(-1)((49-163)/(-12sqrt127)=C
32.54^o=C
Thus, the sides of the triangles are:
a=11.27
b=6
c=7
And its angles are:
A=120^o
B=27.46^o
C=32.54^o

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...