Tuesday, April 3, 2018

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 29

intsec^5(x)tan^3(x)dx
Let's rewrite the integral as:
intsec^5(x)tan^3(x)dx=intsec^5(x)tan^2(x)tan(x)dx
Now using the trigonometric identity:tan^2(x)=sec^2(x)-1
=intsec^5(x)(sec^2(x)-1)tan(x)dx
=intsec^4(x)(sec^2(x)-1)sec(x)tan(x)dx
Now apply the integral substitution:u=sec(x)
du=sec(x)tan(x)dx
=intu^4(u^2-1)du
=int(u^6-u^4)du
apply the sum rule,
=intu^6du-intu^4du
=(u^(6+1)/(6+1))-(u^(4+1)/(4+1))
=u^7/7-u^5/5
substitute back u=sec(x) and add a constant C to the solution,
=(sec^7(x))/7-(sec^5(x))/5+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...