Wednesday, January 3, 2018

Calculus: Early Transcendentals, Chapter 3, 3.4, Section 3.4, Problem 28

Using the quotient rule of derivatives:
y' = [d/(du) (e^u-e^(-u)) * (e^u+e^(-u)) - (e^u-e^(-u)) d/(du) (e^u +e^(-u))]/(e^u+e^(-u))^2
= [(e^u -e^(-u) *(-1))*(e^u+e^(-u)) - (e^u-e^(-u))*(e^u+e^(-u) *(-1))]/(e^u+e^(-u))^2
=[(e^u + e^(-u))*(e^u+e^(-u))- (e^u-e^(-u))*(e^u-e^(-u))]/(e^u+e^(-u))^2
= [(e^u+e^(-u))^2-(e^u-e^(-u))^2] /(e^u+e^(-u))^2
= [(e^u +e^(-u)+e^u-e^(-u)) *(e^u+e^(-u)-e^u+e^(-u))]/(e^u+e^(-u))^2
= (4e^ue^(-u))/(e^u+e^(-u))^2
= 4/(e^u+e^(-u))^2

Hope this helps.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...