Saturday, January 27, 2018

int e^xarccos(e^x) dx Use integration tables to find the indefinite integral.

Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
For the given problem int e^xarccos(e^x) dx , it has a integrand in a form of  inverse cosine function. The integral resembles one of the formulas from the integration as :  int arccos (u/a)du = u*arccos(u/a) -sqrt(a^2-u^2) +C .
 For easier comparison, we may apply u-substitution by letting:
u = e^x then du = e^x dx .
Plug-in the values int e^xarccos(e^x) dx , we get:
int e^xarccos(e^x) dx =int arccos(e^x) * e^xdx
                                    = int arccos(u) * du   
                                 or int arccos(u/1) du
Applying the aforementioned formula from the integration table, we get:
int arccos(u/1) du =u*arccos(u/1) -sqrt(1^2-u^2) +C
                               =u*arccos(u) -sqrt(1-u^2) +C
Plug-in u =e^x on u*arccos(u) -sqrt(1-u^2) +C , we get the indefinite integral as:
int e^xarccos(e^x) dx =e^x*arccos(e^x) -sqrt(1-(e^x)^2) +C
                                    =e^x*arccos(e^x) -sqrt(1-e^(2x)) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...