Tuesday, January 23, 2018

Calculus and Its Applications, Chapter 1, Review Exercises, Section Review Exercises, Problem 44

Differentiate $\displaystyle g(x) = (5 - x)^2 (2x - 1)^5$.

By using Product Rule and Chain Rule,

$
\begin{equation}
\begin{aligned}
g'(x) &= (5 - x)^2 \cdot \frac{d}{dx} (2x - 1)^5 + (2x - 1)^5 \cdot \frac{d}{dx}(5 - x)^2\\
\\
g'(x) &= (5 - x)^2 \cdot 5(2x - 1)^{5 - 1} \cdot \frac{d}{dx} (2x - 1) + (2x - 1)^5 \cdot 2(5 - x)^{2 - 1} \cdot \frac{d}{dx} (5 - x)\\
\\
g'(x) &= (5 - x)^2 \cdot 5(2x - 1)^4 (2) + (2x - 1)^5 \cdot 2 (5 - x)(-1)\\
\\
g'(x) &= 10(5 - x)^2 (2x - 1)^4 - 2(5 - x)(2x - 1)^5\\
\\
g'(x) &= 2(5 - x)(2x - 1)^4 [5 (5 - x) - (2x - 1)]\\
\\
g'(x) &= 2(5 - x)(2x - 1)^4 [ 25 - 5x - 2x + 1]\\
\\
g'(x) &= 2(5 - x)(2x - 1)^4 (26 - 7x)\\
\\
g'(x) &= 2(5 - x)(26 - 7x)(2x - 1)^4
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...