Saturday, January 27, 2018

College Algebra, Chapter 9, 9.6, Section 9.6, Problem 24

Evaluate the expression
$
\left(
\begin{array}{c}
5\\
0
\end{array}
\right)
-
\left(
\begin{array}{c}
5\\
1
\end{array}
\right)
+
\left(
\begin{array}{c}
5\\
2
\end{array}
\right)
-
\left(
\begin{array}{c}
5\\
3
\end{array}
\right)
+
\left(
\begin{array}{c}
5\\
4
\end{array}
\right)
-
\left(
\begin{array}{c}
5\\
5
\end{array}
\right)
$

Recall that the binomial coefficient is denoted by $\displaystyle \left( \frac{n}{r} \right)$ and is defined by
Notice that these are precisely the entries in the fifth row of Pascal's Triangle.

$
\begin{equation}
\begin{aligned}
\left(
\begin{array}{c}
5\\
0
\end{array}
\right)
&=
\frac{5!}{0!(5-0)!} = 1\\
\\

\left(
\begin{array}{c}
5\\
1
\end{array}
\right)
&=
\frac{5!}{1!(5-1)!} = 5\\
\\

\left(
\begin{array}{c}
5\\
2
\end{array}
\right)
&=
\frac{5!}{2!(5-2)!} = 10\\
\\

\left(
\begin{array}{c}
5\\
3
\end{array}
\right)
&=
\frac{5!}{3!(5-3)!} = 10\\
\\

\left(
\begin{array}{c}
5\\
4
\end{array}
\right)
&=
\frac{5!}{4!(5-4)!} = 5 \\
\\

\left(
\begin{array}{c}
5\\
5
\end{array}
\right)
&=
\frac{5!}{5!(5-5)!} = 1

\end{aligned}
\end{equation}
$

Thus,

$
\displaystyle
\left(
\begin{array}{c}
5\\
0
\end{array}
\right)
-
\left(
\begin{array}{c}
5\\
1
\end{array}
\right)
+
\left(
\begin{array}{c}
5\\
2
\end{array}
\right)
-
\left(
\begin{array}{c}
5\\
3
\end{array}
\right)
+
\left(
\begin{array}{c}
5\\
4
\end{array}
\right)
-
\left(
\begin{array}{c}
5\\
5
\end{array}
\right)
= 1 - 5 + 10 - 10 + 5 - 1 = 0
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...