Saturday, November 4, 2017

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 36

Find the integral 22f(x)dx where f(x)={2if 2x04x2if 0<x2

Using Properties of Integral


caf(x)dx+bcf(x)dx=baf(x)dx22f(x)dx=02f(x)dx+20f(x)dx22f(x)dx=022dx+20(4x2)dx


Using 2nd Fundamental Theorem of Calculus

baf(x)dx=F(b)F(a), where F is any anti-derivative of f.

Evaluating the integral 022dx,

Let f(x)=2, then


F(x)=2x+C022dx=F(0)F(2)022dx=2(0)+C[2(2)+C]022dx=0+C+4C022dx=4


Evaluating the integral 20(4x2)dx,

Let f(x)=4x2, then


F(x)=4x(x2+12+1)+CF(x)=4xx33+C




20(4x2)dx=F(2)F(0)20(4x2)dx=4(2)(2)33+C[4(0)0)33+C]20(4x2)dx=883+C0+0C20(4x2)dx=248320(4x2)dx=163


Solving for 22f(x)dx


22f(x)dx=4+16322f(x)dx=12+16322f(x)dx=283

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...