Monday, November 13, 2017

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 56

Determine $\displaystyle \frac{dy}{dt}$ if $\displaystyle y = \frac{1}{3u^5 - 7}$ and $u = 7t^2 + 1$.

We have $\displaystyle \frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt}$
with


$
\begin{equation}
\begin{aligned}

\frac{dy}{du} =& \frac{\displaystyle (3u^5 - 7) \cdot \frac{d}{du} (1) - 1 \cdot \frac{d}{du} (3u^5 - 7) }{(3u^5 - 7)^2} \qquad \text{ and } &&& \frac{du}{dt} =& 7 \frac{d}{dt} (t^2) + \frac{d}{dt} 1
\\
=& \frac{-15u^4}{(3u^5 - 7)^2} &&& =& 14t

\end{aligned}
\end{equation}
$


Thus,


$
\begin{equation}
\begin{aligned}

\frac{dy}{dt} = \frac{-15u^4}{(3u^5 - 7)^2} \cdot 14t =& \frac{-210 tu^4}{(3u^5 - 7)^2}
\\
\\
=& \frac{-210 t (7t^2 + 1)^4}{[3(7t^2 + 1)^5 - 7 ]^2}
&& \text{Substitute $7t^2 + 1$ for $u$}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...