Tuesday, November 28, 2017

Calculus of a Single Variable, Chapter 8, 8.6, Section 8.6, Problem 40

To evaluate the given integral problem: int_0^4 x/sqrt(3+2x)dx , we determine first the indefinite integral function F(x). From the table of indefinite integrals, we may consider the formula for integrals with roots as:
int u/sqrt(u+-a) du = 2/3(u-+2a)sqrt(u+-a)+C
Take note that we have "+ " sign inside the square root on int_0^4 x/sqrt(3+2x)dx then we will follow:
int u/sqrt(u+a) du = 2/3(u-2a)sqrt(u+a) +C.
We may let a = 3 and u = 2x or x= u/2
For the derivative of u, we get du = 2 dx or (du)/2 = dx .
Plug-in the values: u = 2x or x=u/2 ,and (du)/2 = dx , we get:
int_0^4 x/sqrt(3+2x)dx =int_0^4 (u/2)/sqrt(3+u)* (du)/2
=int_0^4 (u du)/(4sqrt(3+u))
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int_0^4 (u du)/(4sqrt(3+u)) =1/4 int_0^4 (u du)/sqrt(3+u)
Apply the aforementioned integral formula from the table of integrals, we get:
1/4 int_0^4 (u du)/sqrt(3+u) =1/4*[2/3(u-2(3))sqrt(u+3)]|_0^4
=1/4*[2/3(u-6)sqrt(u+3)]|_0^4
=2/12(u-6)sqrt(u+3)|_0^4
=1/6(u-6)sqrt(u+3)] |_0^4or((u-6)sqrt(u+3))/6|_0^4
Plug-in u = 2x on((u-6)sqrt(u+3))/6 +C , we get:
int_0^4 x/sqrt(3+2x)dx =((2x-6)sqrt(2x+3))/6|_0^4
Apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
((2x-6)sqrt(2x+3))/6|_0^4 =((2(4)-6)sqrt(2(4)+3))/6-((2(0)-6)sqrt(2(0)+3))/6
=((8-6)sqrt(8+3))/6- ((0-6)sqrt(0+3))/6
=(2*sqrt(11))/6- (-6sqrt(3))/6
= sqrt(11)/3-(-sqrt(3))
= sqrt(11)/3+sqrt(3)
= (sqrt(11)+3sqrt(3))/3 or 2.84 (approximated value).

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...