Tuesday, November 28, 2017

Single Variable Calculus, Chapter 6, 6.5, Section 6.5, Problem 12

Given that $\displaystyle f(x) = \frac{2x}{(1 + x^2)^2}$ with interval $[0,2]$.

a.) Find the average value.


$
\begin{equation}
\begin{aligned}

f_{ave} =& \frac{1}{b - a} \int^b_a f(x) dx
\\
\\
f_{ave} =& \frac{1}{2 - 0} \int^2_0 \frac{2x}{(1 + x^2)^2} dx
\\
\\
\text{Let } u =& 1 + x^2
\\
\\
du =& 2x dx

\end{aligned}
\end{equation}
$


Make sure that your upper and lower limits are also in terms of $u$.


$
\begin{equation}
\begin{aligned}

f_{ave} =& \frac{1}{2} \left( \frac{1}{2} \right) \int^{1 + (2)^2}_{1 + (0)^2} \frac{2}{u^2} du
\\
\\
f_{ave} =& \frac{1}{2} \int^5_1 u^{-2} du
\\
\\
f_{ave} =& \frac{1}{2} \left[ \frac{u^{-1}}{-1} \right]^5_1
\\
\\
f_{ave} =& \frac{1}{2} \left[ - \frac{1}{5} \left( \frac{-1}{1} \right) \right]
\\
\\
f_{ave} =& \frac{2}{5}

\end{aligned}
\end{equation}
$


b.) Find $C$ such that $f_{ave} = f(c)$.


$
\begin{equation}
\begin{aligned}

f_{ave} =& f(c)
\\
\\
\frac{2}{5} =& \frac{2c}{(1 + c^2)^2}
\\
\\
(1 + c^2)^2 =& 5c
\\
\\
1 + 2c^2 + c^4 =& 5c
\\
\\
c^4 + 2c^2 - 5c + 1 =&0

\end{aligned}
\end{equation}
$


We got 4 values of $c$. However, we omit the complex roots. So, we have it supposed to have 4 values of $c$. So that,


$
\begin{equation}
\begin{aligned}

& c \approx 0.21979
\\
& c \approx 1.20684

\end{aligned}
\end{equation}
$



c.) Sketch the graph of $f$ and a rectangle whose area is the same as the area under the graph of $f$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...