Saturday, November 4, 2017

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 32

Suppose that a poster with 1-inch margins as the bottom and sides and a 2-inch margin at the top have an area of 180in$^2$. What dimensions will give the largest printed area?







$ A = xy = 180;\\
\displaystyle y = \frac{180}{x}$


$A_1 = (x-2)(y-3)$

Substituting the value of $y$, we have

$
\begin{equation}
\begin{aligned}
A_1 &= (x - 2) \left( \frac{180}{x} - 3\right)\\
\\
A_1 &= 180 - 3x - \frac{360}{x} + 6
\end{aligned}
\end{equation}
$


Taking the derivative,

$
\begin{equation}
\begin{aligned}
A_1' &= -3 + \frac{360}{x^2}\\
\end{aligned}
\end{equation}
$


when $A_1' = 0,$

$
\begin{equation}
\begin{aligned}
0 & = - 3 + \frac{360}{x^2}\\
\\
\frac{360}{x^2} &= 3\\
\\
x^2 &= \frac{360}{3}\\
\\
x &= 2\sqrt{30}\text{ inches}
\end{aligned}
\end{equation}
$

when $x = 2\sqrt{30}\text{ inches,}$

$
\begin{equation}
\begin{aligned}
y &= \frac{180}{x} = \frac{180}{2\sqrt{30}} = 3 \sqrt{30}\text{ inches}
\end{aligned}
\end{equation}
$


Therefore, the dimensions that will give the largest printed area is $2 \sqrt{30}$in by $3\sqrt{30}$in

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...