Wednesday, April 5, 2017

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 4

a.) Determine the slope of the tangent line to the curve $y = x - x^3$ at the point $P (1, 0)$

$(i) \text{ Using the definition (Slope of the tangent line)}$


$
\begin{equation}
\begin{aligned}

\displaystyle m &= \lim \limits_{x \to 1} \frac{f(x) - f(1)}{x - 1} && \\
\\
\displaystyle m &= \lim \limits_{x \to 1} \frac{x - x^3 - [1 - (1)^3]}{x - 1}
&& \text{ Substitute value of $a$ and $x$}\\
\\
\displaystyle m &= \lim \limits_{x \to 1} \frac{-x(x + 1) \cancel{(x - 1)}}{\cancel{x - 1}}
&& \text{ Cancel out like terms}\\
\\
\displaystyle m &= \lim \limits_{x \to 1} [- x(x + 1)] = \lim \limits_{x \to 1} ( -x^2-x) = -(1)^2 - (1) = -2
&& \text{ Evaluate the limit}\\

\end{aligned}
\end{equation}
$


Therefore,
The slope of the tangent line is $m = -2$
$(ii)\text{ Using the equation}$

$\displaystyle m = \lim \limits_{h \to 0} \frac{f(a + h) - f(a)}{h}$

Let $f(x) = x - x^3$ So the slope of the tangent line at $(1, 0)$ is


$
\begin{equation}
\begin{aligned}

\displaystyle m =& \lim \limits_{h \to 0} \frac{f( 1 + h) - f(1)}{h} && \\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{1 + h - (1 + h)^3 - [1 - (1)^3]}{h}
&& \text{ Substitute value of $a$}\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{1 + h - (1 + 3h^2 + 3h + h^3)}{h}
&& \text{ Expand and simplify }\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{-2h - 3h^2 - h^3}{h}
&& \text{ Factor the numerator}\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{\cancel{h}(-2 - 3h -h^2)}{\cancel{h}} = \lim \limits_{h \to 0} (-2-3h-h^)
&& \text{ Cancel out like terms}
\\
m =& -2-3(0) - (0)^2 = -2

\end{aligned}
\end{equation}
$


Therefore,
The slope of the tangent line is $m = -2$
b.) Write an expression of the tangent line in part (a)

Using the point slope form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m ( x - x_1)\\
\\
y - 0 =& -2 ( x - 1)
&& \text{ Substitute value of $x, y$ and $m$ and simplify}\\
\end{aligned}
\end{equation}
$

Therefore,
The equation of the tangent line at $(1,0)$ is $y = -2x + 2$

c.) Draw a graph of the curve and the tangent line in successively smaller viewing rectangles centered at $(1, 0)$ until the curve and the line appear to coincide.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...