Monday, April 24, 2017

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 34

Determine the critical numbers of the function $g(t) = |3t - 4|$

We can rewrite the given function as


$
\begin{equation}
\begin{aligned}

g(t) =& \sqrt{(3t - 4)^2}
\\
\\
g'(t) =& \frac{d}{dt} (\sqrt{(3t - 4)^2})
\\
\\
g'(t) =& \frac{d}{dt} [(3t - 4)^2]^{\frac{1}{2}}
\\
\\
g'(t) =& \frac{1}{2} [(3t - 4)^2]^{\frac{-1}{2}} \frac{d}{dt} (3t - 4)^2
\\
\\
g'(t) =& \left( \frac{1}{\cancel{2}} \right) [(3t - 4)^2]^{\frac{-1}{2}} (\cancel{2}) (3t-4) \frac{d}{dt} (3t - 4)
\\
\\
g'(t) =& [(3t - 4)^2]^{\frac{-1}{2}} (3t - 4) (3)
\\
\\
g'(t) =& \frac{3 (3t - 4)}{[(3t - 4)^2]^{\frac{1}{2}}}

\end{aligned}
\end{equation}
$


Solving for critical numbers


$
\begin{equation}
\begin{aligned}

& g'(t) = 0
\\
\\
& 0 = \frac{3 (3t - 4)}{[(3t - 4)^2]^{\frac{-1}{2}}}
\\
\\
& \sqrt{(3t - 4)^2} \left[ 0 = \frac{3 (3t - 4)}{\cancel{\sqrt{(3t - 4)^2}}} \right] \cancel{\sqrt{(3t - 4)^2}}
\\
\\
& 0 = 3 (3t - 4)
\\
\\
& \text{ or }
\\
\\
& \frac{\cancel{3} (3t - 4)}{\cancel{3}} = \frac{0}{3}
\\
\\
& 3t - 4 = 0
\\
\\
& 3t = 4
\\
\\
& \frac{\cancel{3}t}{\cancel{3}} = \frac{4}{3}
\\
\\
& t = \frac{4}{3}

\end{aligned}
\end{equation}
$



Therefore, the critical number is $\displaystyle t = \frac{4}{3}$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...