Saturday, April 29, 2017

2^(3-z) = 625 Solve the equation accurate to three decimal places

For exponential equation:2^(3-z)=625 , we may apply the logarithm property:
log(x^y) = y * log (x) .
This helps to bring down the exponent value.
 Taking "log" on both sides:
log(2^(3-z))=log(625)
(3-z)* log (2) = log(625)
Divide both sides by log (2) to isolate (3-z):
((3-z) * log (2)) /(log(2))= (log(625))/(log(2))
3-z=(log(625))/(log(2))
Subtract both sides by 3 to isolate "-z":
3-z=(log(625))/(log(2))
-3                            -3
------------------------------------
-z=(log(625))/(log(2)) -3
Multiply both sides by -1 to solve +z or z:
(-1)*(-z)=(-1)* [(log(625))/(log(2)) -3]

 
 z~~-6.288       Rounded off to three decimal places.
To check, plug-in z=-6.288 in 2^(3-z)=625 :
2^(3-(-6.288))=?625
2^(3+6.288)=?625
2^(9.288)=?625
625.1246145~~625   TRUE
 
Conclusion: z~~-6.288 as the final answer.
 
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...