Wednesday, April 12, 2017

Calculus: Early Transcendentals, Chapter 4, 4.8, Section 4.8, Problem 23

f(x)=x^6-x^5-6x^4-x^2+x+10
f'(x)=6x^5-5x^4-24x^3-2x+1
x_(n+1)=x_n-((x_n)^6-(x_n)^5-6(x_n)^4-(x_n)^2+x_n+10)/(6(x_n)^5-5(x_n)^4-24(x_n)^3-2(x_n)+1)
See the attached graph. From the graph the roots of f are approximately -1.9 , -1.2 , 1.1 and 3.
Approximate until the eight decimal places are same.
For x_1=-1.9
x_2=(-1.9)-((-1.9)^6-(-1.9)^5-6(-1.9)^4-(-1.9)^2+(-1.9)+10)/(6(-1.9)^5-5(-1.9)^4-24(-1.9)^3-2(-1.9)+1)
x_2~~-1.94278290
x_3~~-1.93828380
x_4~~-1.93822884
x_5~~-1.93822883
x_6~~-1.93822883
Now for x_1=-1.2
x_2=(-1.2)-((-1.2)^6-(-1.2)^5-6(-1.2)^4-(-1.2)^2+(-1.2)+10)/(6(-1.2)^5-5(-1.2)^4-24(-1.2)^3-2(-1.2)+1)
x_2~~-1.22006245
x_3~~-1.21997997
x_4~~-1.21997997
Now for x_1=1.1
x_2=(1.1)-(1.1^6-1.1^5-6(1.1)^4-(1.1)^2+1.1+10)/(6(1.1)^5-5(1.1)^4-24(1.1)^3-2(1.1)+1)
x_2~~1.14111662
x_3~~1.13929741
x_4~~1.13929375
x^5~~1.13929375
Now for x_1=3
x_2=3-(3^6-3^5-6(3)^4-3^2+3+10)/(6(3)^5-5(3)^4-24(3)^3-2(3)+1)
x_2~~2.99
x_3~~2.98984106
x_4~~2.98984102
x_5~~2.98984102
To eight decimal places the roots of the equation are,
-1.93822883 , -1.21997997 , 1.13929375 , 2.98984102

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...