Friday, April 28, 2017

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 60

Find the derivative of $\displaystyle y = \frac{(x^3 + 1)^4 \sin ^2 x}{\sqrt[3]{x}}$ by using logarithmic differentiation.

By taking logarithms of both sides..

$\displaystyle \ln y = \ln \left[ \frac{(x^3 + 1)^4 \sin^2 x}{\sqrt[3]{x}} \right]$

If we apply the Laws of logarithm, we have


$
\begin{equation}
\begin{aligned}

\ln y =& \ln (x^3 + 1)^4 + \ln \sin^2 x - \frac{1}{3} \sqrt[3]{x}
&& \text{recall that } \ln (xy) = \ln x + \ln y \text{ and } \ln \left( \frac{x}{y} \right) = \ln x - \ln y
\\
\\
\ln y =& 4 \ln (x^3 + 1) + 2 \ln \sin x - \frac{1}{3} \ln x
&& \text{recall that } \ln (x)^k = k \ln x

\end{aligned}
\end{equation}
$


By taking the derivative implicitly, we have..


$
\begin{equation}
\begin{aligned}

&\frac{\displaystyle \frac{d}{dx} (y)}{y} = 4 \left( \frac{\displaystyle \frac{d}{dx} (x^3 + 1)}{x^3 + 1} \right) + 2 \left(\frac{\displaystyle \frac{d}{dx} (\sin x)}{\sin x} \right) - \frac{1}{3} \left( \frac{\displaystyle \frac{d}{dx} (x)}{x } \right)
\\
\\
& \frac{\displaystyle \frac{dy}{dx}}{y} = 4 \left( \frac{3x^2}{x^3 + 1} \right) + \frac{2 \cos x}{\sin x} - \frac{1}{3} \left( \frac{1}{x} \right)
\\
\\
& \frac{\displaystyle \frac{dy}{dx}}{y} = \frac{12x^2}{x^3 + 1} + 2 \cot x - \frac{1}{3x}
\\
\\
& \frac{dy}{dx} = y \left[ \frac{12x^2}{x^3 + 1} + 2 \cot x - \frac{1}{3x} \right]
\\
\\
& \frac{dy}{dx} = \left[ \frac{(x^3 + 1)^4 \sin ^2 x}{\sqrt[3]{x}} \right] \left[ \frac{12x^2}{x^3 + 1} + 2 \cot x - \frac{1}{3x} \right]



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...