Monday, April 3, 2017

Calculus: Early Transcendentals, Chapter 2, Review Exercises, Section Review Exercises, Problem 14

Determine the limit $\displaystyle \lim_{x \to -\infty} \frac{\sqrt{x^2 -9 }}{2x - 6}$

$\displaystyle \lim_{x \to -\infty} = \frac{\sqrt{x^2 - 9}}{2x - 6} = \frac{\sqrt{(x + 3)(x - 3)}}{2(x - 3)}$

By dividing both numerator and denominator by $x$ and by using the property of limits, we have

$
\begin{equation}
\begin{aligned}
\lim_{x \to -\infty} \frac{\sqrt{x^2 - 9}}{2x - 6} &= \lim_{x \to -\infty} \frac{\sqrt{1 - \frac{9}{x^2}}}{2 - \frac{6}{x}}
&& \text{Since $\sqrt{x^2} = x$ for } x > 0\\
\\
&= \frac{\displaystyle \lim_{x \to -\infty}\sqrt{1 - \frac{9}{x^2}}}{\displaystyle \lim_{x \to -\infty} \left( 2 - \frac{6}{x} \right)}
= \frac{\sqrt{\displaystyle \lim_{x \to -\infty} 1 - 9 \lim_{x \to -\infty} \frac{1}{x^2} }}{\displaystyle \lim_{x \to -\infty} 2 - 6 \lim_{x \to -\infty} \frac{1}{x}}\\
\\
&= \frac{\sqrt{1 - 9 \cdot 0}}{2 - 6 \cdot 0} = \frac{\sqrt{1}}{2} = \frac{1}{2}
\end{aligned}
\end{equation}
$


In computing the limit as $x \to - \infty$, we must remember that for $x < 0$, we have $\sqrt{x^2} = |x| = - x$.
So when we divide the numerator by $x$, for $x < 0$ we get
$\displaystyle \frac{1}{x} \sqrt{x^2 - 9} = -\frac{1}{\sqrt{x^2}} \sqrt{x^2 - 9} = -\sqrt{1 - \frac{9}{x^2}}$

Therefore,

$
\begin{equation}
\begin{aligned}
\lim_{x \to -\infty} \frac{\sqrt{x^2 - 9}}{2x - 6} &= \lim_{x \to -\infty} \frac{-\sqrt{1 - \frac{9}{x^2}}}{2 - \frac{6}{x}}\\
\\
&= \frac{-\sqrt{\displaystyle 1 - 9 \lim_{x \to -\infty} \frac{1}{x^2} }}{\displaystyle 2 - 6 \lim_{x \to -\infty} \frac{1}{x}}\\
\\
&= \frac{-\sqrt{1 - 9 \cdot 0}}{2 - 6 \cdot 0}\\
\\
&= \frac{-\sqrt{1}}{2} = \frac{-1}{2}
\end{aligned}
\end{equation}
$

Thus,
$\displaystyle \lim_{x \to -\infty} \frac{\sqrt{x^2 - 9 }}{2x -6} = -\frac{1}{2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...