Monday, January 9, 2017

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 88

Express the limit as a derivative and evaluate $\displaystyle \lim_{\theta \to \pi/3} \frac{\cos \theta - 0.5}{\displaystyle \theta - \frac{\pi}{3} }$

Based from the definition,

$\displaystyle f'(a) = \lim_{\theta \to a} \frac{f(\theta) - f(a)}{\theta - a}$

If we let $f(\theta) = \cos \theta$, then $\displaystyle f\left( \frac{\pi}{3} \right) = \cos \left( \frac{\pi}{3} \right) = 0.5 $/p>


$\displaystyle \lim_{\theta \to \pi/3} \frac{\cos \theta - 0.5}{\displaystyle \theta - \frac{\pi}{3}} = \lim_{\theta \to a/3} \frac{\displaystyle f(\theta) - f\left( \frac{\pi}{3} \right)}{\theta - \frac{\pi}{3}}$

Therefore, we have


$
\begin{equation}
\begin{aligned}

f(\theta) =& \cos \theta
\\
\\
f'(\theta) =& - \sin \theta
\\
\\
& \text{So,}
\\
\\
f'\left( \frac{\pi}{3} \right) =& - \sin \left( \frac{\pi}{3} \right)
\\
\\
f'\left( \frac{\pi}{3} \right) =& \frac{- \sqrt{3}}{2 }

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...