Wednesday, January 11, 2017

Calculus of a Single Variable, Chapter 5, 5.6, Section 5.6, Problem 52

The derivative of y in terms of x is denoted by d/(dx)y or y' .
For the given problem: y =1/2[xsqrt(4-x^2)+4arcsin(x/2)] , we apply the basic derivative property:
d/(dx) c*f(x) = c d/(dx) f(x) .
Then,
d/(dx)y =d/(dx) 1/2[xsqrt(4-x^2)+4arcsin(x/2)]
y’ =1/2 d/(dx) [xsqrt(4-x^2)+4arcsin(x/2)]

Apply the basic differentiation property: d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)
y’ =1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]

For the derivative of d/(dx) (xsqrt(4-x^2)) , we apply the Product Rule: d/(dx)(u*v) = u’*v =+u*v’ .
d/(dx) (xsqrt(4-x^2))= d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))

Let u=x then u'= 1
v= sqrt(4-x^2) then v' =-x/ sqrt(4-x^2)
Note: d/(dx) sqrt(4-x^2) = d/(dx)(4-x^2)^(1/2)
Applying the chain rule of derivative:
d/(dx)(4-x^2)^(1/2)= 1/2(4-x^2)^(-1/2)*(-2x)
=-x(4-x^2)^(-1/2)
=-x/(4-x^2)^(1/2) or - –x/sqrt(4-x^2)
Following the Product Rule, we set-up the derivative as:
d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))
= 1 * sqrt(4-x^2)+ x*(-x/sqrt(4-x^2))
= sqrt(4-x^2)-x^2/sqrt(4-x^2)
Express as one fraction:
sqrt(4-x^2)* sqrt(4-x^2)/ sqrt(4-x^2)-x^2/sqrt(4-x^2)
=( sqrt(4-x^2))^2/ sqrt(4-x^2) –x^2/sqrt(4-x^2)
=( 4-x^2)/ sqrt(4-x^2) –x^2/sqrt(4-x^2)
=( 4-x^2-x^2)/ sqrt(4-x^2)
=( 4-2x^2)/ sqrt(4-x^2)

Then, d/(dx) (xsqrt(4-x^2))= ( 4-2x^2)/ sqrt(4-x^2)

For the derivative of d/(dx) (4arcsin(x/2)) , we apply the basic derivative property: d/(dx) c*f(x) = c d/(dx) f(x) .
d/(dx) (4arcsin(x/2))= 4 d/(dx) (arcsin(x/2))
Apply the basic derivative formula for inverse sine function: d/(dx) (arcsin(u))= (du)/sqrt(1-u^2) .
Let u =x/2 then du=1/2
4d/(dx) (4arcsin(x/2))]= 4*(1/2)/sqrt(1-(x/2)^2)
= 2/sqrt(1-(x^2/4))
=2/sqrt(1*4/4-(x^2/4))
= 2/sqrt((4-x^2)/4)
= 2/ (sqrt(4-x^2)/sqrt(4))
=2/ (sqrt(4-x^2)/2)
=2*2/sqrt(4-x^2)
=4/sqrt(4-x^2)


Combining the results, we get:
y' = 1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]
=1/2[( 4-2x^2)/ sqrt(4-x^2)+4/sqrt(4-x^2)]
=1/2[( 4-2x^2+4)/ sqrt(4-x^2)]
=1/2[( -2x^2+8)/ sqrt(4-x^2)]
=1/2[( 2(-x^2+4))/ sqrt(4-x^2)]
=(-x^2+4)/ sqrt(4-x^2)]
or y'=(4-x^2)/ sqrt(4-x^2)]

Applying Law of Exponents: x^n/x^m= x^n-m :
y' =(4-x^2)/ sqrt(4-x^2)
=(4-x^2)^1/ (4-x^2)^(1/2)
=(4-x^2)^(1-1/2)
=(4-x^2)^(1/2)
Final answer:
y'=(4-x^2)^(1/2)
or
y'=sqrt(4-x^2)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...