Saturday, September 3, 2016

Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 30

Find the area of the triangle with the given vertices $(0,5), (2,-2)$ and $(5,1)$ using Calculus.

We can plot the triangle first to help us evaluate the area.







We can use the point slope form to determine the equations of the line..

at points $(0,5)$ and $(2, -2)$


$
\begin{equation}
\begin{aligned}

y - 5 =& \left( \frac{-2 - 5}{2 - 0} \right) (x - 0 )
\\
\\
y = & - \frac{7}{2} x + 5

\end{aligned}
\end{equation}
$


at points $(0,5)$ and $(5, 1)$


$
\begin{equation}
\begin{aligned}

y - 5 =& \left( \frac{1 - 5}{5 - 0} \right) (x - 0)
\\
\\
y =& - \frac{4}{5} x + 5

\end{aligned}
\end{equation}
$


at points $(5,1)$ and $(2, -2)$


$
\begin{equation}
\begin{aligned}

y - 1 =& \left( \frac{-2 - 1}{2 - 5} \right) (x - 5)
\\
\\
y =& \frac{-3}{-3} (x - 5) + 1
\\
\\
y =& x - 4

\end{aligned}
\end{equation}
$


Now, we can divide the area into two sub region. Let $A_1$ and $A_2$ be the area in the left and right part respectively. So..

By using vertical strip,


$
\begin{equation}
\begin{aligned}

A_1 =& \int^{x_22}_{x_1} (y_{\text{upper}}, y_{\text{lower}}) dx
\\
\\
A_1 =& \int^2_0 \left[ \frac{-4}{5} x + 5 - \left( - \frac{7}{2} x + 5 \right) \right] dx
\\
\\
A_1 =& \left[ \frac{27}{10} \left( \frac{x^2}{2} \right) \right]^2_2
\\
\\
A_1 =& \frac{27}{5} \text{ square units}

\end{aligned}
\end{equation}
$


For the right part,


$
\begin{equation}
\begin{aligned}

A_2 =& \int^5_2 \left[ \frac{-4}{5} x + 5 - (x - 4) \right] dx
\\
\\
A_2 =& \int^{5}_2 \left[ - \frac{9x}{5} + 9 \right] dx
\\
\\
A_2 =& \left[ - \frac{9x^2}{2 (5)} + 9x \right] ^5_2
\\
\\
A_2 =& \frac{81}{10} \text{ square units}

\end{aligned}
\end{equation}
$


Therefore, the total area of the triangle is $\displaystyle A_1 + A_2 = \frac{27}{2}$ square units

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...