Sunday, September 18, 2016

sum_(n=0)^oo (-1)^n/((2n+1)!) Determine the convergence or divergence of the series.

To determine the convergence or divergence of the series sum_(n=0)^oo (-1)^n/((2n+1)!) , we may apply ratio test.
In Ratio test, we determine the limit as:
lim_(n-gtoo)|a_(n+1)/a_n| = L
or
lim_(n-gtoo)|a_(n+1)*1/a_n| = L
 Then ,we follow the conditions:
a) L lt1 then the series converges absolutely.
b) Lgt1 then the series diverges.
c) L=1 or does not exist  then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.
For the series sum_(n=0)^oo (-1)^n/((2n+1)!) , we have:
a_n=(-1)^n/((2n+1)!)
Then,
1/a_n=((2n+1)!)/(-1)^n
a_(n+1)=(-1)^(n+1)/((2(n+1)+1)!)
            =(-1)^(n+1)/((2n+2+1)!)
            =(-1)^(n+1)/((2n+3)!)
            =((-1)^n*(-1))/((2n+3)(2n+2)((2n+1)!))
Applying the Ratio test on the power series, we set-up the limit as:
lim_(n-gtoo) |((-1)^n*(-1))/((2n+3)(2n+2)((2n+1)!)) *((2n+1)!)/(-1)^n|
Cancel out common factors: (-1)^n and (2n+1)! .
lim_(n-gtoo) |(-1)/((2n+3)(2n+2))|
Evaluate the limit.
lim_(n-gtoo) |(-1)/((2n+3)(2n+2))| =|-1| lim_(n-gtoo) |1/((2n+3)(2n+2))|
                                         =1* 1/oo
                                         =1*0
                                         =0
The L=0 satisfies ratio test condition: Llt1  since 0lt1 .
Thus, the series sum_(n=0)^oo (-1)^n/((2n+1)!) is absolutely convergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...