Sunday, September 18, 2016

(dr)/(dt) = (1+e^t)^2/e^(3t) Solve the differential equation.

(dr)/dt=(1+e^t)^2/e^(3t)
r=int(1+e^t)^2/e^(3t)dt
r=int(1+2(1)e^t+(e^t)^2)/e^(3t)dt
r=int(1+2e^t+e^(2t))/e^(3t)dt
r=int(1/e^(3t)+(2e^t)/e^(3t)+e^(2t)/e^(3t))dt
r=int(e^(-3t)+2e^(t-3t)+e^(2t-3t))dt
r=int(e^(-3t)+2e^(-2t)+e^(-t))dt
Apply the sum rule and take the constants out,
r=inte^(-3t)dt+2inte^(-2t)dt+inte^(-t)dt
Now use the common integral: inte^x=e^x
r=e^(-3t)/(-3)+2e^(-2t)/(-2)+e^(-t)/(-1)
simplify and add a constant C to the solution,
r=-1/3e^(-3t)-e^(-2t)-e^(-t)+C
r=-(1/3e^(-3t)+e^(-2t)+e^(-t))+C
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...