Friday, September 30, 2016

Precalculus, Chapter 1, 1.1, Section 1.1, Problem 34

Plot the points $A = (4,-3), B = (4,1)$ and $C = (2,1)$ and form the triangle $ABC$. Verify that the triangle is a right triangle. Determine its area.








$
\begin{equation}
\begin{aligned}

AB =& \sqrt{(4-4)^2 + [1-(-3)]^2}
\\
=& \sqrt{0+16}
\\
=& \sqrt{16}
\\
=& 4
\\
BC =& \sqrt{(2-4)^2 + (1-1)^2}
\\
=& \sqrt{4+0}
\\
=& \sqrt{4}
\\
=& 2
\\
AC =& \sqrt{(2-4)^2 + [1-(-3)]^2}
\\
=& \sqrt{4+16}
\\
=& \sqrt{20}
\\
=& 2 \sqrt{5}
\\
(AC)^2 =& (AB)^2 + (BC)^2
\\
(2 \sqrt{5})^2 =& (4)^2 + (2)^2
\\
(4 \cdot 5) =& 16 + 4
\\
20 =& 20


\end{aligned}
\end{equation}
$


Thus, $\Delta ABC$ is a right triangle.

The area of $\displaystyle \Delta ABC = \frac{1}{2} AB \cdot BC$,


$
\begin{equation}
\begin{aligned}

\Delta ABC =& \frac{1}{2} (4)(2)
\\
\\
=& \frac{8}{2}
\\
\\
=& 4 \text{ square units}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...