Wednesday, September 28, 2016

College Algebra, Chapter 8, Review Exercises, Section Review Exercises, Problem 42

Identify the type of curve which is represented by the equation $\displaystyle x^2 + 4y^2 = 4x + 8 $
Find the foci and vertices(if any), and sketch the graph

$
\begin{equation}
\begin{aligned}
x^2 - 4x + 4y^2 &= 8 && \text{Subtract } 4x\\
\\
x^2 - 4x + 4 + 4y^2 &= 8 + 4 && \text{Complete the square; Add } \left( \frac{-4}{2} \right)^2 = 4\\
\\
(x - 2)^2 + 4y^2 &= 12 && \text{Perfect square}\\
\\
\frac{(x-2)^2}{12} + \frac{y^2}{3} &= 1 && \text{Divide by 12}
\end{aligned}
\end{equation}
$


The equation is an ellipse that has form $\displaystyle \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ with center at $(h,k)$ and horizontal major axis.
Since, the denominator of $x^2$ is bigger. The graph of the shifted ellipse is obtained by shifting the graph of $\displaystyle \frac{x^2}{12} + \frac{y^2}{3} =1$
by 2 units to the right. This gives us $a^2 = 12$ and $b^2 = 3$. So, $a = 2\sqrt{3}, b = \sqrt{3}$ and $c = \sqrt{a^2 - b^2} = \sqrt{12-3} = 3$. Thus,
by applying transformatioms, we have

$
\begin{equation}
\begin{aligned}
\text{center } & (h,k) && \rightarrow && (2,0)\\
\\
\text{vertices: major axis} & (a,0)&& \rightarrow && (2\sqrt{3},0) && \rightarrow && (2\sqrt{3}+2,0) && = && (2\sqrt{3}+2,0)\\
\\
& (-a,0)&& \rightarrow && (-2\sqrt{3},0) && \rightarrow && (-2\sqrt{3}+2,0) && = && (-2\sqrt{3}+2,0)\\
\\
\text{minor axis }& (0,b)&& \rightarrow && (0,\sqrt{3}) && \rightarrow && (0+2, \sqrt{3}) && = && (2, \sqrt{3})\\
\\
& (0,-b)&& \rightarrow && (0,-\sqrt{3}) && \rightarrow && (0+2, -\sqrt{3}) && = && (2, - \sqrt{3})\\
\\
\text{foci }& (c,0)&& \rightarrow && (3,0) && \rightarrow && (3+2,0) && = && (5,0)\\
\\
& (-c,0)&& \rightarrow && (-3,0) && \rightarrow && (-3+2,0) && = && (-1,0)
\end{aligned}
\end{equation}
$

Therefore, the graph is

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...