Saturday, September 24, 2016

Single Variable Calculus, Chapter 6, 6.2, Section 6.2, Problem 20

Find the value generated by rotating $\mathscr{R}_1$ about $OC$



If you rotate $\mathscr{R}_1$ about $OC$, its cross section form a circular washer with outer radius 1 and inner radius $\sqrt[3]{y}$. Thus, the cross sectional area can be computed by subtracting the area of the outer circle to the inner circle. Hence, $A_{\text{outer}} = \pi (1)^2$ and $A_{\text{inner}} = \pi \left( \sqrt[3]{y}\right)^2$


Therefore, the value is...

$
\begin{equation}
\begin{aligned}
V &= \int^1_0 \left[ \pi (1)^2 - \pi (\sqrt[3]{y})^2 \right] dy\\
\\
V &= \pi \left[ y - \frac{y^{\frac{5}{3}}}{\frac{5}{3}}\right]^1_0\\
\\
V &= \pi \left( \left[ 1 - \frac{(1)^{\frac{5}{3}}}{\frac{5}{3}}\right] - \left[ 0 -\frac{(0)^{\frac{5}{3}}}{\frac{5}{3}} \right] \right)\\
\\
V &= \frac{2\pi}{5} \text{ cubic units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...