Tuesday, September 20, 2016

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 10

a.) Determine the slope of the tangent to the curve $\displaystyle y = \frac{1}{\sqrt{x}}$ at the point where $x = a$

Using the equation

$\displaystyle m = \lim \limits_{h \to 0} \frac{f(a + h) - f(a)}{h}$

Let $\displaystyle f(x) = \frac{1}{\sqrt{x}}$. So the slope of the tangent to the curve at the point where $x = a$ is


$
\begin{equation}
\begin{aligned}

\displaystyle m =& \lim \limits_{h \to 0} \frac{f(a + h) - f(a)}{h}
&& \\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{\frac{1}{\sqrt{a + h}} - \frac{1}{\sqrt{a}}}{h}
&& \text{Substitute value of $a$}\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{\sqrt{a} - \sqrt{a + h}}{(h)(\sqrt{a}) (\sqrt{a + h})}
&& \text{Get the LCD on the numerator and simplify}\\
\\
\displaystyle m =& \lim \limits_{h \to 0} \frac{\sqrt{a} - \sqrt{a + h}}{(h)(\sqrt{a}) (\sqrt{a + h})} \cdot
\frac{\sqrt{a} + \sqrt{a + h}}{\sqrt{a} + \sqrt{a + h}}
&& \text{Multiply both numerator and denominator by $(\sqrt{a} + \sqrt{a + h})$}\\
\\
\displaystyle m =& \frac{a - (a+ h)}{(h)(\sqrt{a})(\sqrt{a + h})(\sqrt{a} + \sqrt{a + h})}
&& \text{Combine like terms}\\
\\
\displaystyle m =& \frac{-\cancel{h}}{\cancel{(h)}(\sqrt{a})(\sqrt{a + h})(\sqrt{a} + \sqrt{a + h})}
&& \text{Cancel out like terms}\\
\\
\displaystyle m =& \frac{-1}{(\sqrt{a}) (\sqrt{a + h})(\sqrt{a} + \sqrt{a + h})} = \frac{-1}{(\sqrt{a}) (\sqrt{a + 0}) (\sqrt{a} + \sqrt{a + 0})}
&& \text{Evaluate the limit}\\
\\
\displaystyle m =& \frac{-1}{2a \sqrt{a}}
&& \text{Slope of the tangent}

\end{aligned}
\end{equation}
$


b.) Determine the equations of the tangent lines at the points $(1, 1)$ and $\displaystyle\left(4, \frac{1}{2}\right)$

Solving for the equation of the tangent line at $(1, 1)$

Using the equation of slope of the tangent in part (a), we have


$
\begin{equation}
\begin{aligned}

a =& 1
&& \text{So the slope is }\\
\\
m =& \frac{-1}{2a \sqrt{a}}
&& \\
\\
m =& \frac{-1}{2(1) \sqrt{1}}
&& \text{Substitute value of $a$}\\
\\
m =& \frac{-1}{2}
&& \text{Slope of the tangent line at $(1, 1)$}\\
\end{aligned}
\end{equation}
$

Using point slope form

$
\begin{equation}
\begin{aligned}

y - y_1 =& m ( x - x_1)
&& \\
\\
y - 1 =& \frac{-1}{2}(x - 1)
&& \text{Substitute value of $x, y$ and $m$}\\
\\
y - 1 =& \frac{- x + 1}{2} + 1
&& \text{Get the LCD}\\
\\
y =& \frac{- x + 1 + 2}{2}
&& \text{Combine like terms}
\\
y =& \frac{-x + 3}{2}
\end{aligned}
\end{equation}
$

Therefore,
The equation of the tangent line at $(1,1)$ is $ y = \displaystyle \frac{-x + 3}{2}$

Solving for the equation of the tangent line at $\displaystyle \left(4, \frac{1}{2}\right)$

Using the equation of slope of the tangent in part (a), we have $a = 4$. So the slope is


$
\begin{equation}
\begin{aligned}

m =& \frac{-1}{2a \sqrt{a}}
&& \\
\\
m =& \frac{-1}{2(4)\sqrt{4}}
&& \text{Substitute the value of $x, y$ and $m$}\\
\\
m =& \frac{-1}{16}
&& \text{Slope of the tangent line at $\left(4, \frac{1}{2}\right)$}

\end{aligned}
\end{equation}
$


Using point slope form



$
\begin{equation}
\begin{aligned}

y - y_1 =& m ( x - x_1)
&& \\
\\
y - \frac{1}{2} =& \frac{-1}{16} (x - 4 )
&& \text{Substitute value of $x, y$ and $m$}\\
\\
y =& \frac{-x + 4}{16} + \frac{1}{2}
&& \text{Get the LCD}\\
\\
y =& \frac{-x + 4 + 8}{16}
&& \text{Combine like terms}
\\
y =& \displaystyle \frac{-x + 12}{16}
\end{aligned}
\end{equation}
$


Therefore,
The equation of the tangent line at $\displaystyle\left(4, \frac{1}{2}\right)$ is $ y = \displaystyle \frac{-x + 12}{16}$


c.) Graph the curve and both tangent lines on a common screen.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...