Sunday, September 4, 2016

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 74

The equation $6x^{\frac{2}{3}} - 216 = 0$ involves a power of the variable. Find all real solutions of the equation.

$
\begin{equation}
\begin{aligned}
6x^{\frac{2}{3}} - 216 &= 0 && \text{Add both sides by 216}\\
\\
6x^{\frac{2}{3}} - 216 + 216 &= 0 + 216 && \text{Simplify}\\
\\
6x^{\frac{2}{3}} &= 216 && \text{Divide both sides by 6}\\
\\
\frac{\cancel{6}x^{\frac{2}{3}}}{\cancel{6}} &= \frac{216}{6} && \text{Simplify}\\
\\
x^{\frac{2}{3}} &= 36 && \text{Raise both sides by } \frac{3}{2}\\
\\
\left( x^{\frac{2}{3}} \right)^{\frac{3}{2}} &= \pm (36)^{\frac{3}{2}} && \text{Simplify}\\
\\
x &= \pm (36)^{\frac{3}{2}} && \text{Simplify}\\
\\
x &= \pm \left[ (36)^{\frac{1}{2}} \right]^3 && \text{Simplify}\\
\\
x &= \pm (6)^3 && \text{Simplify}\\
\\
x &= \pm 216
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...