Tuesday, June 9, 2015

Single Variable Calculus, Chapter 1, 1.2, Section 1.2, Problem 9

Suppose that for a cubic function of $f, f(1) = 6$ and $f(-1) = f(0) =f(2)=0$. Find its expression.


$
\begin{equation}
\begin{aligned}
y = ax^3+bx^2+cx+d\\
@ \, f(1) &= 6\\
&a(1)^3 + b(1)^2 + c(1) + d &=6\\
&a+b+c+d &= 6 &&\text{Equation 1}\\

@ f(-1) &=0\\
&a(-1)^3+b(-1)^2+c(-1)+d &= 0\\
&-a+b-c+d &= 0 &&\text{Equation 2}\\
@f(0) &= 0\\
&a(0)^3+b(0)^2+c(0)+d&=0\\
&d&=0 &&\text{Equation 3}\\
@f(2) &= 0\\
&a(2)^3+b(2)^2+c(2)+d &= 0\\
&8a+4b+2c+d&=0 &&\text{Equation 4}
\end{aligned}
\end{equation}
$



*Combining equations 1 to 4 will result to

$a = -3, \, b = 3, \, c=6$

$\boxed{.: \text{the cubic function is } -3x^3+3x^2+6x = 0}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...