Wednesday, June 24, 2015

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 42

Differentiate $\displaystyle f(x) = \frac{(5x - 4)^7}{(6x + 1)^3}$.



$
\begin{equation}
\begin{aligned}

f'(x) =& \frac{\displaystyle (6x + 1)^3 \cdot \frac{d}{dx} (5x-4)^7 - (5x-4)^7 \cdot \frac{d}{dx} (6x + 1)^3 }{[(6x + 1)^3]^2}
\\
\\
f'(x) =& \frac{\displaystyle (6x + 1)^3 (7) (5x-4)^6 \cdot \frac{d}{dx} (5x-4) - (5x-4)^7 (3) (6x + 1)^2 \cdot \frac{d}{dx} (6x+1) }{(6x+1)^6}
\\
\\
f'(x) =& \frac{(6x+1)^3 (7) (5x-4)^6 (5) - (5x-4)^7 (3) (6x+1)^2 (6) }{(6x+1)^6}
\\
\\
f'(x) =& \frac{35 (6x+1)^3 (5x - 4)^6 - 18 (5x - 4)^7 (6x+1)^2}{(6x+1)^6}
\\
\\
f'(x) =& \frac{(6x+1)^2 (5x - 4)^6 [35 (6x+1) - 18 (5x - 4)]}{(6x+1)^6}
\\
\\
f'(x) =& \frac{(5x - 4)^6 (210x + 35 - 90x + 72)}{(6x+1)^4}
\\
\\
f'(x) =& \frac{(5x-4)^6 (120x + 107)}{(6x+1)^4}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...