Thursday, June 11, 2015

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 59

Give an example that $\lim \limits_{x \to a} [f(x) g(x)]$ may exist even though neither $\lim \limits_{x \to a} f(x)$ nor $\lim \limits_{x \to a} g(x)$ exists.

Suppose that $\displaystyle f(x) \frac{x - 4}{\sqrt{x}}$ and $\displaystyle g(x) = \frac{x^2 - 2x}{\sqrt{x}}$


$
\begin{equation}
\begin{aligned}

& \lim \limits_{x \to 0} f(x) \text{ and } \lim \limits_{x \to 0} g(x) \text{ do not exists for the functions are not defined for $$ denominator}\\
\\
\text{ But, } & \lim \limits_{x \to 0} [f(x) g(x)] = \lim \limits_{x \to 0} \left[ \left( \frac{x - 4}{\sqrt{x}} \right) \left( \frac{x^2 - 2x}{\sqrt{x}} \right) \right]
\qquad = \lim \limits_{x \to 0}\left[\frac{(x-4)(x^2-2x)}{(\sqrt{x})(\sqrt{x})}\right]\\
\\
& \lim \limits_{x \to 0} [f(x)g(x)] = \lim \limits_{x \to 0} \left[ \frac{x^3 - 4x^2 - 2x^2 + 8x}{x} \right]\\
\\
& \lim \limits_{x \to 0} [f(x)g(x)] = \lim \limits_{x \to 0} \left[ \frac{\cancel{x}(x^2 - 6x + 8)}{\cancel{x}} \right]
\qquad = \lim \limits_{x \to 0} (x^2-6x+8)\\
\\
& \lim \limits_{x \to 0} [f(x)g(x)] = (0)^2 - 6(0) + 8 = 8\\
\\
& \lim \limits_{x \to 0} [f(x)g(x)] = 8





\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...