Sunday, June 28, 2015

College Algebra, Chapter 8, Review Exercises, Section Review Exercises, Problem 40

Identify the type of curve which is represented by the equation $\displaystyle 36x^2 - 4y^2 - 36x - 8y = 31 $
Find the foci and vertices(if any), and sketch the graph

$
\begin{equation}
\begin{aligned}
36 (x^2 - x + \quad) - 4(y^2 + 2y + \quad)&= 31 && \text{Group terms and factor}\\
\\
36 \left( x^2 - x + \frac{1}{4} \right) - 4 (y^2 + 2y + 1) &= 31 + 9 - 4 && \text{Complete the square; Add } \left( \frac{2}{2} \right)^2 =1
\text{ on the left and subtract. Then, add 9 on the right side and subtract 4}\\
\\
36 \left( x - \frac{1}{2} \right) - 4 (y + 1)^2 &= 36 && \text{Perfect square}\\
\\
\left( x - \frac{1}{2} \right)^2 - \frac{(y+1)^2}{9} &= 1 && \text{Divide by 36}
\end{aligned}
\end{equation}
$


The equation is hyperbola that has the form $\displaystyle \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ with center at $(h,k)$ and horizontal transverse axis.
Since the $x^2$-term is positive. The graph of the shifted hyperbola is obtained by shifting the graph of $\displaystyle x^2 - \frac{y^2}{9} = 1$, by
$\displaystyle \frac{1}{2}$ units to the right and 1 unit downward. This gives us $a^2 = 1$ and $b^2 = 9$, so $a = 1, b =3$ and $c = \sqrt{a^2+b^2} = \sqrt{1+9} = \sqrt{10}$.
Thus, by applying transformations, we have

$
\begin{equation}
\begin{aligned}
\text{center } & (h,k) && \rightarrow && \left( \frac{1}{2}, -1 \right)\\
\\
\text{vertices } & (a,0)&& \rightarrow && (1,0) && \rightarrow && \left( 1 + \frac{1}{2}, 0 - 1 \right) && = && \left( \frac{3}{2}, -1 \right)\\
\\
& (-a,0)&& \rightarrow && (-1,0) && \rightarrow && \left( -1 + \frac{1}{2}, 0 - 1 \right) && = && \left( - \frac{1}{2}, -1 \right)\\
\\
\text{foci } & (c,0)&& \rightarrow && (\sqrt{10},0) && \rightarrow && \left( \sqrt{10} + \frac{1}{2}, 0 - 1 \right) && = && \left( \sqrt{10} + \frac{1}{2}, - 1 \right)\\
\\
& (-c,0)&& \rightarrow && (-\sqrt{10},0) && \rightarrow && \left( -\sqrt{10} + \frac{1}{2}, 0 - 1 \right) && = && \left( -\sqrt{10} + \frac{1}{2}, - 1 \right)
\end{aligned}
\end{equation}
$

Therefore, the graph is

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...