Sunday, March 1, 2015

Single Variable Calculus, Chapter 2, Review Exercises, Section Review Exercises, Problem 15

Determine $\displaystyle \lim \limits_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x}$


$
\begin{equation}
\begin{aligned}

\lim \limits_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x} \cdot \frac{1 + \sqrt{1 - x^2}}{1 + \sqrt{1 - x^2}} &= \lim \limits_{x \to 0} \frac{1 - (1 - x^2)}{x(1 + \sqrt{1 - x^2})}
&& \text{Multiply numerator and denominator by $(1 + \sqrt{1 - x^2})$ then simplify}\\
\\
& = \lim \limits_{x \to 0} \frac{\cancel{(x)} (x)}{\cancel{x}(1 + \sqrt{1 - x^2})}
&& \text{Factor numerator and cancel out like terms}\\
\\
&= \frac{0}{1 + \sqrt{1 - (0)^2}} = \frac{0}{2}
&& \text{Substitute value of $x$ and simplify}\\
\\
& \fbox{$ = 0$}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...