This function is defined on [-1, 1] and is differentiable on (-1, 1). Its derivative is f'(x) = 1/sqrt(1-x^2) - 2.
The derivative doesn't exist at x = +-1. It is zero where 1-x^2 = 1/4, so at x = +-sqrt(3)/2. It is an even function and it is obviously increases for positive x and decreases for negative x. Hence it is positive on (-1, -sqrt(3)/2) uu (sqrt(3)/2, 1) and negative on (-sqrt(3)/2, sqrt(3)/2), and the function f increases and decreases respectively.
This way we can determine the maximum and minimum of f: -1 is a local (one-sided) minimum, 1 is a local one-sided maximum, -sqrt(3)/2 is the local maximum and sqrt(3)/2 is a local minimum.
Thursday, March 12, 2015
f(x) = arcsinx - 2x Find any relative extrema of the function
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
No comments:
Post a Comment