Wednesday, March 25, 2015

Intermediate Algebra, Chapter 3, 3.3, Section 3.3, Problem 40

Determine an equation of the line that satisfies the condition "through $(7,-2)$; slope $\displaystyle \frac{1}{4}$".

(a) Write the equation in standard form.

Use the Point Slope Form of the equation of a line with $(x_1,y_1) = (7,-2)$ and $m = \displaystyle \frac{1}{4}$


$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
&& \text{Point Slope Form}
\\
\\
y - (-2) =& \frac{1}{4} (x-7)
&& \text{Substitute $x = 7, y = -2$ and } m = \frac{1}{4}
\\
\\
y + 2 =& \frac{1}{4}x - \frac{7}{4}
&& \text{Distributive Property}
\\
\\
- \frac{1}{4}x + y =& - \frac{7}{4} - 2
&& \text{Subtract each side by } \left( \frac{1}{4}x + 2 \right)
\\
\\
- \frac{1}{4}x + y =& - \frac{15}{4}
&& \text{Standard Form}
\\
\text{or} &
&&&
\\
x - 4y =& 15
&&

\end{aligned}
\end{equation}
$



(b) Write the equation in slope-intercept form.


$
\begin{equation}
\begin{aligned}

- \frac{1}{4}x + y =& - \frac{15}{4}
&& \text{Standard Form}
\\
\\
y =& \frac{1}{4}x - \frac{15}{4}
&& \text{Slope Intercept Form}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...